Find the direction cosines and direction angles of the given vector. (Round the direction angles to two decimal places.) a = 5, 9, 3 cos(α) = cos(β) = cos(γ) = α = ° β = ° γ = °

Respuesta :

Answer:

Step-by-step explanation:

given is a vector as (5,9,3)

a = (5,9,3)

To find out direction cosines

First let us calculate modulus of vector a

[tex]||a|| =\sqrt{5^2+9^2+3^2} \\=\sqrt{25+81+9} \\=\sqrt{115}[/tex]

Direction ratios are (5,9,3)

Magnitude of vector a = [tex]\sqrt{115}[/tex]

So direction cosines would be

[tex](\frac{5}{\sqrt{115} } ,\frac{9}{\sqrt{115} },\frac{3}{\sqrt{115} })[/tex]

Angles would be

[tex](\alpha, \beta, \gamma) = arccos ((\frac{5}{\sqrt{115} } ,\frac{9}{\sqrt{115} },\frac{3}{\sqrt{115} })[/tex]

=cos inverse  (0.4662, 0.8393, 0.2798)

= (62.21, 32.93,32,94)