Respuesta :

Answer:

[tex]4 \sqrt{6} \times \sqrt{3} = 12 \sqrt{2} [/tex]

Step-by-step explanation:

We want to simplify the radical expression:

[tex]4 \sqrt{6} \times \sqrt{3} [/tex]

We write √6 as √(2*3).

This implies that:

[tex]4 \sqrt{6} \times \sqrt{3} = 4 \sqrt{2 \times 3} \times \sqrt{3} [/tex]

We now split the radical for √(2*3) to get:

[tex]4 \sqrt{6} \times \sqrt{3} = 4 \sqrt{2} \times \sqrt{3} \times \sqrt{3} [/tex]

We obtain a perfect square at the far right.

[tex]4 \sqrt{6} \times \sqrt{3} = 4 \sqrt{2} \times (\sqrt{3} )^{2} [/tex]

This simplifies to

[tex]4 \sqrt{6} \times \sqrt{3} = 4 \sqrt{2} \times 3[/tex]

This gives us:

[tex]4 \sqrt{6} \times \sqrt{3} = 4 \times 3 \sqrt{2} [/tex]

and finally, we have:

[tex]4 \sqrt{6} \times \sqrt{3} = 12 \sqrt{2} [/tex]