Try to sketch by hand the curve of intersection of the parabolic cylinder y = x2 and the top half of the ellipsoid x2 + 7y2 + 7z2 = 49. Then find parametric equations for this curve.

Respuesta :

Plug [tex]y=x^2[/tex] into the equation of the ellipsoid:

[tex]x^2+7(x^2)^2+7z^2=49[/tex]

Complete the square:

[tex]7x^4+x^2=7\left(x^4+\dfrac{x^2}7+\dfrac1{14^2}-\dfrac1{14^2}\right)=7\left(x^2+\dfrac1{14}\right)^2+\dfrac1{28}[/tex]

Then the intersection is such that

[tex]7\left(x^2+\dfrac1{14}\right)^2+7z^2=\dfrac{1371}{28}[/tex]

[tex]\left(x^2+\dfrac1{14}\right)^2+z^2=\dfrac{1371}{196}[/tex]

which resembles the equation of a circle, and suggests a parameterization is polar-like coordinates. Let

[tex]x(t)^2+\dfrac1{14}=\sqrt{\dfrac{1371}{196}}\cos t\implies x(t)=\pm\sqrt{\sqrt{\dfrac{1371}{196}}\cos t-\dfrac1{14}}[/tex]

[tex]y(t)=x(t)^2=\sqrt{\dfrac{1371}{196}}\cos t-\dfrac1{14}[/tex]

[tex]z=\sqrt{\dfrac{1371}{196}}\sin t[/tex]

(Attached is a plot of the two surfaces and the intersection; red for the positive root [tex]x(t)[/tex], blue for the negative)

Ver imagen LammettHash