Answer:
Part A:
[tex]Displacement\ vector= -40\hat i+20\hat j+25\hat k[/tex]
Part B:
Magnitude of displacement=44.721359 m
Explanation:
Given Data:
40 m in negative direction of the x axis
20 m perpendicular path to his left (considering +ve y direction)
25 m up a tower (Considering +ve z direction)
Required:
Solution:
Part A:
[tex]Displacement= (0-40)\hat i+(0+20)\hat j+(0+25)\hat k\\Displacement= -40\hat i+20\hat j+25\hat k[/tex]
where:
i,j,k are unit vectors
Part B:
Sign falls to foot of tower so z=0
[tex]Displacement= -40\hat i+20\hat j+0\hat k[/tex]
Magnitude of displacement:
[tex]Magnitude\ of\ displacement=\sqrt{(-40)^2+(20)^2+0^2} \\Magnitude\ of\ displacement=44.721359\ m[/tex]