Answer:
a) [tex] \theta_2 = 0.05 * \frac{3.5}{0.7} = 0.25[/tex]
b) [tex] \theta_2 = 0.05 * \frac{140}{700} = 0.01[/tex]
Explanation:
We are comparing two wavelengths with the radius and diameter constant, and if we want to compare it, we need to use the following formula:
[tex]\frac{\theta_1}{\theta_2}= \frac{\lambda_1}{\lambda_2}[/tex]
Where [tex] \theta[/tex] represent the angular resolution and [tex]\lambda[/tex] the wavelength.
So if we have a fixed resolution and wavelength 1 and we want to find the resolution for a new condition we can solve for [tex] \theta_2[/tex] and we got
[tex] \theta_2 = \theta_1 \frac{\lambda_2}{\lambda_1}[/tex]
Part a
For this case the subindex 1 is for the color red and we know that:
[tex] \lambda_1 = 700 nm *\frac{1 \mu m}{1000 nm} = 0.7 \mu m[/tex]
And the angular resolution for the color red is specified as [tex] \theta_1 = 0.05[/tex]
And for the infrared case we know that [tex] \lambda_2 = 3.5 \mu m[/tex], so if we replace we got:
[tex] \theta_2 = 0.05 * \frac{3.5}{0.7} = 0.25[/tex]
Part b
For this case the subindex 1 is for the color red and we know that:
[tex] \lambda_1 = 700 nm[/tex]
And the angular resolution for the color red is specified as [tex] \theta_1 = 0.05[/tex]
And for the ultraviolet case we know that [tex] \lambda_2 = 140 nm[/tex], so if we replace we got:
[tex] \theta_2 = 0.05 * \frac{140}{700} = 0.01[/tex]