The following sample data are from a normal population: 10, 9, 12, 14, 13, 11, 6, 5.

a. What is the point estimate of the population mean?
b. What is the point estimate of the population standard deviation (to 2 decimals)?
c. With 95% confidence, what is the margin of error for the estimation of the population mean (to 1 decimal)?
d. What is the 95% confidence interval for the population mean (to 1 decimal)?

Respuesta :

Answer:

(a) Point estimate of the population mean = 10

(b) Point estimate of the population standard deviation = 3.21

(c) The margin of error for the estimation of the population mean = 2.2

(d) 95% confidence interval for the population mean = [7.8 , 12.2] .

Step-by-step explanation:

Arranging our sample data given from a normal population in ascending order we get ;   5+ 6+ 9+ 10+ 11+ 12+ 13+ 14  

(a) Point estimate of population mean is given by Xbar;

              Xbar = [tex]\frac{\sum X_i}{n}[/tex]   where n = 8 {number of obs. in data}

             Xbar = [tex]\frac{5+ 6+ 9+ 10+ 11+ 12+ 13+ 14}{8}[/tex] = 10

(b) Point estimate of the population standard deviation is given by [tex]\sigma[/tex] ;

      Standard deviation formula = [tex]\frac{\sum (X_i - Xbar)^{2}}{n-1}[/tex]

   Solving above formula we get point estimate of the population standard deviation = 3.21 .

(c) Margin of error for the estimation of the population mean is given by the expression ;

   95% Confidence Interval for population mean = Xbar [tex]\pm[/tex] Margin of error

 where Margin of error =  1.96 * [tex]\frac{\sigma}{\sqrt{n} }[/tex]  {Here 1.96 is written because at 5% level

                                                         of significance z table has a value of 1.96

                                                              for two tail}

Therefore, Margin of error = [tex]1.96*\frac{3.21}{\sqrt{8} }[/tex] = 2.2

(d) 95% Confidence Interval for population mean = Xbar [tex]\pm[/tex] 1.96 * [tex]\frac{\sigma}{\sqrt{n} }[/tex]

                                                                                  = 10 [tex]\pm[/tex] [tex]1.96*\frac{3.21}{\sqrt{8} }[/tex] = 10 [tex]\pm[/tex] 2.2

                                                                                  = [10 - 2.2 , 10 + 2.2]

Therefore, 95% C.I. for population mean = [7.8 , 12.2] .

 

The sample data, 10, 9, 12, 14, 13, 11, 6, 5, obtained from a normal

population gives the following values;

a. 10

b. 3.21

c. 2.2

d. 95% C.I. is; 7.8 < μ < 12.2

How can the normal population data be evaluated?

a. The point estimate is an estimate of the population mean.

The point estimate is found as follows;

(10 + 9 + 12 + 14 + 13 + 11 + 6 + 5) ÷ 8 = 10

  • The point estimate of the population mean, [tex]\overline{x}[/tex] = 10

b. The point estimate of the population standard deviation is given by the sample standard deviation as follows;

Sample variance, s² = ((10 - 10)² + (9 - 10)² + (12 - 10)² + (14 - 10)² + (13 - 10)² + (11 - 10)² + (6 - 10)² + (5 - 10)²) ÷ (8 - 1) ≈ 10.286

s ≈ √(10.286) ≈ 3.21

  • The point estimate for the population standard deviation, s 3.21

c. The margin of error, MOE, is given by the formula;

[tex]MOE_{\gamma} = \mathbf{z_{\gamma} \times \sqrt{\dfrac{s^2}{n} }}[/tex]

Where;

z-value at 95% confidence level = 1.96

Which gives;

[tex]MOE_{\gamma} = 1.96 \times \sqrt{\dfrac{10.286^2}{8} } \approx 2.2[/tex]

  • The MOE for the estimation of the population mean, [tex]MOE_{\gamma}[/tex] ≈ 2.2

d. The 95% confidence interval for the population mean is found as follows;

[tex]\mathbf{\overline {x} \pm z_{\alpha/2} \cdot \dfrac{s}{\sqrt{n} }}[/tex]

Which gives;

[tex]10 - 1.96 \times \dfrac{3.207}{\sqrt{8} } < \mu < \mathbf{10 + 1.96 \times \dfrac{3.207}{\sqrt{8} }}[/tex]

  • The 95% confidence interval is approximately 7.8 < μ < 12.2

Learn more about the normal (probability) distribution here:

https://brainly.com/question/1804405