Respuesta :
Answer:
[tex]a_{n} = 0.3(- 0.2)^{n - 1}[/tex]
Step-by-step explanation:
The given sequence is 0.3, - 0.06, 0.012, - 0.0024, 0.00048 ........ so on.
Now, this is a G.P. sequence with common ratio [tex]\frac{- 0.06}{0.3} = - 0.2[/tex].
Now, the explicit formula of the given series will be
[tex]a_{n} = 0.3(- 0.2)^{n - 1}[/tex] , where [tex]a_{n}[/tex] is the nth term of the G.P. sequence.
Now, for n = 1, [tex]a_{1} = 0.3(- 0.2)^{1 - 1} = 0.3[/tex].
For, n = 2, [tex]a_{2} = 0.3(- 0.2)^{2 - 1} = 0.3 \times (- 0.2) = - 0.06[/tex] and so on. (Answer)