Answer:
Ethan can type 12 pages before the meeting starts.
Step-by-step explanation:
Given:
Number of pages he can type =2
Number of hours he can type 2 pages = [tex]\frac{1}8\ hrs[/tex]
We need to find number of pages he can type in [tex]\frac34\ hrs[/tex]
Solution:
Now first we will find number of pages in 1 hour
So we can say;
In [tex]\frac{1}8\ hrs[/tex] = 2 pages
In 1 hour = number of pages he can type in 1 hour
By Using Unitary method we get;
number of pages he can type in 1 hour = [tex]\frac{2}{\frac18} =\frac{2\times8}{1}=16\ pages[/tex]
Now we can say that;
In 1 hour = 16 pages
So [tex]\frac34\ hrs[/tex] = number of pages he can type in [tex]\frac34\ hrs[/tex]
Again By using Unitary method we get;
number of pages he can type in [tex]\frac34\ hrs[/tex] = [tex]16\times \frac34 = 12\ pages[/tex]
Hence Ethan can type 12 pages before the meeting starts.