Respuesta :
Answer:
Option A
Step-by-step explanation:
We want to find an expression that is equivalent to
[tex] {16}^{ \frac{3}{4}x } [/tex]
Recall that:
[tex] {a}^{ \frac{m}{n} } = \sqrt[n]{ {a}^{m} } [/tex]
We apply this property of exponents to rewrite our expression:
We set a=16, n=4 and m=3x
This implies that:
[tex]{16}^{ \frac{3x}{4} } = \sqrt[4]{ {16}^{3x} } = (\sqrt[4]{ {16} })^{3x} [/tex]
The first choice is correct.