Which is equivalent to 16 Superscript three-fourths x?

RootIndex 4 StartRoot 16 EndRoot Superscript 3 x
RootIndex 4 x StartRoot 16 EndRoot cubed
RootIndex 3 StartRoot 16 EndRoot Superscript 4 x
RootIndex 3 x StartRoot 16 EndRoot Superscript 4

Respuesta :

Answer:

Option A

Step-by-step explanation:

We want to find an expression that is equivalent to

[tex] {16}^{ \frac{3}{4}x } [/tex]

Recall that:

[tex] {a}^{ \frac{m}{n} } = \sqrt[n]{ {a}^{m} } [/tex]

We apply this property of exponents to rewrite our expression:

We set a=16, n=4 and m=3x

This implies that:

[tex]{16}^{ \frac{3x}{4} } = \sqrt[4]{ {16}^{3x} } = (\sqrt[4]{ {16} })^{3x} [/tex]

The first choice is correct.

Answer:

A

Step-by-step explanation:

edg review 2020