Respuesta :

The value of [tex]\sec\theta =\pm\sqrt{\frac{11}{8}}[/tex].

Solution:

Given data:

[tex]$\tan^2\theta=\frac{3}{8}[/tex]

To find the value of [tex]\sec\theta:[/tex]

Using trigonometric identity,

[tex]\sec^2\theta=1+\tan^2\theta[/tex]

Substitute [tex]\tan^2\theta=\frac{3}{8}[/tex] in the identity, we get

[tex]$\Rightarrow \sec^2\theta=1+\frac{3}{8}[/tex]

1 can be written as [tex]\frac{1}{1}[/tex].

             [tex]$ =\frac{1}{1} +\frac{3}{8}[/tex]

Do cross multiplication.

            [tex]$ =\frac{8}{8} +\frac{3}{8}[/tex]

Denominators are same, so you can add the fractions.

            [tex]$ =\frac{8+3}{8}[/tex]

[tex]$\Rightarrow \sec^2\theta =\frac{11}{8}[/tex]

Taking square root on both sides, we get

[tex]$\Rightarrow \sec\theta =\pm\sqrt{\frac{11}{8}}[/tex]

Option B is the correct answer.

Hence the value of [tex]\sec\theta =\pm\sqrt{\frac{11}{8}}[/tex].