Respuesta :

frika

Answer:

See explanation

Step-by-step explanation:

PQRS is a parallelogram, then

[tex]PQ\parallel RS\\ \\QR\parallel SP[/tex]

and

[tex]PQ\cong RS\\ \\QR\cong SP[/tex]

Also

[tex]\angle P\cong \angle R\\ \\\angle Q\cong \angle S[/tex]

1. Consider triangles PQA and RQA, where A is the diagonals intersection point. In these triangles,

[tex]QA\cong QA\ [\text{Reflexive property}][/tex]

[tex]\angle PQA\cong \angle RQA\ [\text{Because QS is angle bisector}][/tex]

[tex]\angle QPA\cong \angle QRA\ [\text{Diagonal PR divides congruent angles in congruent halves}][/tex]

Hence, by AAS postulate triangles PQA and RQA are congruent. Congruent triangles have congruent corresponding parts, so

[tex]PQ\cong RQ[/tex]

2. Consider triangles PSA and RSA. In these triangles

[tex]SA\cong SA\ [\text{Reflexive property}][/tex]

[tex]\angle PSA\cong \angle RSA\ [\text{Because QS is angle bisector}][/tex]

[tex]\angle SPA\cong \angle SRA\ [\text{Diagonal PR divides congruent angles in congruent halves}][/tex]

Hence, by AAS postulate triangles PSA and RSA are congruent. Congruent triangles have congruent corresponding parts, so

[tex]PS\cong RS[/tex]

3. Since [tex]PQ\cong RS[/tex] and [tex]PQ\cong RQ[/tex], you have [tex]RS\cong RQ[/tex]

Therefore,

[tex]PQ\cong QR\cong RS\cong SP[/tex]

Parallelogram with all congruent sides ia a rhombus.

Ver imagen frika