Respuesta :

Answer:

The zeros of the given function are not real. The zeros of the function is at :

[tex]x=\frac{1}{2}+\frac{5i}{2}[/tex]    and  [tex]x=\frac{1}{2}-\frac{5i}{2}[/tex]

Step-by-step explanation:

Given quadratic function:

[tex]f(x)=2x^2-2x+13[/tex]

To  find the zeros of the function using quadratic formula.

Solution:

Applying quadratic formula:

[tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]

For the given function:

[tex]a=2, b=-2\ and\ c=13[/tex]

Thus, we have:

[tex]x=\frac{-(-2)\pm\sqrt{(-2)^2-4(2)(13)}}{2(2)}[/tex]

[tex]x=\frac{2\pm\sqrt{4-104}}{4}[/tex]

[tex]x=\frac{2\pm\sqrt{-100}}{4}[/tex]

[tex]x=\frac{2\pm\sqrt{100}i}{4}[/tex]

[tex]x=\frac{2\pm10i}{4}[/tex]

[tex]x=\frac{2+10i}{4}[/tex]      and  [tex]x=\frac{2-10i}{4}[/tex]

[tex]x=\frac{2}{4}+\frac{10i}{4}[/tex]   and  [tex]x=\frac{2}{4}-\frac{10i}{4}[/tex]

[tex]x=\frac{1}{2}+\frac{5i}{2}[/tex]    and  [tex]x=\frac{1}{2}-\frac{5i}{2}[/tex]

Thus, the zeros of the given function are not real. The zeros of the function is at :

[tex]x=\frac{1}{2}+\frac{5i}{2}[/tex]    and  [tex]x=\frac{1}{2}-\frac{5i}{2}[/tex]