Answer:
1) [tex]-4[/tex]
2) [tex]-3[/tex]
3) [tex]1[/tex]
4) [tex]-2[/tex]
5) [tex]4[/tex]
Step-by-step explanation:
According to the information given in the exercise, the value of "x" is:
[tex]x = -2[/tex]
Then:
1) You must substitute [tex]x = -2[/tex] into the expresion [tex]x-2[/tex]:
[tex]=(-2)-2[/tex]
Now, you must evaluate:
[tex]=-4[/tex]
2) You have to substitute the given value of "x" into the second expression:
[tex]x-1=(-2)-1[/tex]
Finally, evaluating, you get the following result:
[tex]=-3[/tex]
3) According to the Zero exponent Rule, any non-zero number with an exponent of zero is equal to 1.
Then, substituting [tex]x = -2[/tex] into the expression [tex]x^0[/tex] and then evaluating, you get:
[tex]x^0=(-2)^0=1[/tex]
4) By definition:
[tex]a^1=a[/tex]
Then, substituting [tex]x = -2[/tex] into [tex]x^1[/tex] and evaluating, you get:
[tex]x^1=(-2)^1=-2[/tex]
5) Since:
[tex]a^2=a*a[/tex]
When you substitute the given value of "x" into the last expression and then you evaluate, you get:
[tex]x^2=(-2)^2=(-2)(-2)=4[/tex]