Answer:
a) 81.5%
b) 95%
c) 75%
Step-by-step explanation:
We are given the following information in the question:
Mean, μ = 266 days
Standard Deviation, σ = 15 days
We are given that the distribution of length of human pregnancies is a bell shaped distribution that is a normal distribution.
Formula:
[tex]z_{score} = \displaystyle\frac{x-\mu}{\sigma}[/tex]
a) P(between 236 and 281 days)
[tex]P(236 \leq x \leq 281)\\\\= P(\displaystyle\frac{236 - 266}{15} \leq z \leq \displaystyle\frac{281-266}{15})\\\\= P(-2 \leq z \leq 1)\\\\= P(z \leq 1) - P(z < -2)\\= 0.838 - 0.023 = 0.815 = 81.5\%[/tex]
b) a) P(last between 236 and 296)
[tex]P(236 \leq x \leq 281)\\\\= P(\displaystyle\frac{236 - 266}{15} \leq z \leq \displaystyle\frac{296-266}{15})\\\\= P(-2 \leq z \leq 2)\\\\= P(z \leq 2) - P(z < -2)\\= 0.973 - 0.023 = 0.95 = 95\%[/tex]
c) If the data is not normally distributed.
Then, according to Chebyshev's theorem, at least [tex]1-\dfrac{1}{k^2}[/tex] data lies within k standard deviation of mean.
For k = 2
[tex]1-\dfrac{1}{(2)^2} = 75\%[/tex]
Atleast 75% of data lies within two standard deviation for a non normal data.
Thus, atleast 75% of pregnancies last between 236 and 296 days approximately.