Suppose that diastolic blood pressure readings of adult males have a bell-shaped distribution with a mean of 84 mmHg and a standard deviation of 9 mmHg. Using the empirical rule, what percentage of adult males have diastolic blood pressure readings that are greater than 102 mmHg? Please do not round your answer.

Respuesta :

Answer:

[tex]P(X>\mu +2*\sigma)P(X>102)=0.025[/tex]

Step-by-step explanation:

The empirical rule, also known as three-sigma rule or 68-95-99.7 rule, "is a statistical rule which states that for a normal distribution, almost all data falls within three standard deviations (denoted by σ) of the mean (denoted by µ)".

Let X the random variable who represent the diastolic blood pressure readings of adult males

From the problem we have the mean and the standard deviation for the random variable X. [tex]E(X)=84, Sd(X)=9[/tex]

So we can assume [tex]\mu=84 , \sigma=9[/tex]

On this case in order to check if the random variable X follows a normal distribution we can use the empirical rule that states the following:

• The probability of obtain values within one deviation from the mean is 0.68

• The probability of obtain values within two deviation's from the mean is 0.95

• The probability of obtain values within three deviation's from the mean is 0.997

So we need values such that

[tex]P(X<\mu -\sigma)=P(X <75)=0.16[/tex]    

[tex]P(X>\mu +\sigma)=P(X >93)=0.16[/tex]  

[tex]P(X<\mu -2*\sigma)P(X<66)=0.025[/tex]    

[tex]P(X>\mu +2*\sigma)P(X>102)=0.025[/tex]

[tex]P(X<\mu -3*\sigma)=P(X<57)=0.0015[/tex]

[tex]P(X>\mu +3*\sigma)=P(X>211)=0.0015[/tex]

So for this case the answer would be:

[tex]P(X>\mu +2*\sigma)P(X>102)=0.025[/tex]