Respuesta :

[tex]S_{25}=\dfrac{325}{2}[/tex]

Step-by-step explanation:

The given sequence:

[tex]\dfrac{1}{2}+1+\dfrac{3}{2}+2+ ...[/tex]

Here, first term (a) = [tex]\dfrac{1}{2}[/tex], common difference(d) =[tex]1-\dfrac{1}{2}=\dfrac{1}{2}[/tex] and

the number of terms (n) = 25

The given sequence are in AP.

To find, the value of [tex]S_{25}[/tex] = ?

We know that,

The sum of nth terms of an AP

[tex]S_{n}=\dfrac{n}{2}[2a+(n-1)d][/tex]

The sum of 25th terms of an AP

[tex]S_{25}=\dfrac{25}{2}[2(\dfrac{1}{2})+(25-1)(\dfrac{1}{2})][/tex]

⇒ [tex]S_{25}=\dfrac{25}{2}[1+(24)(\dfrac{1}{2})][/tex]

⇒ [tex]S_{25}=\dfrac{25}{2}[1+12][/tex]

⇒ [tex]S_{25}=\dfrac{25}{2}[13][/tex]

⇒ [tex]S_{25}=\dfrac{325}{2}[/tex]

∴ [tex]S_{25}=\dfrac{325}{2}[/tex]