Answer:
The slope of the line is: [tex]$ \frac{\textbf{7}}{\textbf{3}} $[/tex]
Step-by-step explanation:
The product of the slope of two perpendicular slopes = - 1.
Given the slope of one of the perpendicular lines, say, [tex]$ m_{1} $[/tex] = [tex]$ -\frac{3}{7} $[/tex].
We have to determine the slope of the line perpendicular to the first line, We call this slope - [tex]$ m_{2} $[/tex].
We know that the product of the slopes [tex]$ m_{1}. m_{2} = - 1 $[/tex]
[tex]$ \implies -\frac{3}{7} . m_2 = - 1 $[/tex]
[tex]$ \implis m_{2} = - 1 \times - \frac{7}{3} $[/tex]
[tex]$ \therefore m_{2} = \frac{\textbf{7}}{\textbf{3}} $[/tex]
Hence, the answer.