Beryllium-11 is a radioactive isotope of the alkaline metal Beryllium. It decays at a rate of 4.9% every second. Assuming you started with 100%, how much would be left after 45 seconds?\

Respuesta :

Answer:

11.02 % of an isotope will be left after 45 seconds.

Explanation:

[tex]N=N_o\times e^{-\lambda t}\\\\\lambda =\frac{0.693}{t_{\frac{1}{2}}}[/tex]

where,

[tex]N_o[/tex] = initial mass of isotope

N = mass of the parent isotope left after the time, (t)

[tex]t_{\frac{1}{2}}[/tex] = half life of the isotope

[tex]\lambda[/tex] = rate constant

We have :

Mass of Beryllium-11 radioactive isotope= [tex]N_o=100[/tex]

Mass of Beryllium-11 radioactive isotope after 45 seconds = [tex]N=?[/tex]

t = 45 s

[tex]\lambda[/tex] = rate constant  = [tex]4.9 \% s^{-1}=0.049 s^{-1}[/tex]

[tex]N=N_o\times e^{-(\lambda \times t}[/tex]

Now put all the given values in this formula, we get

[tex]N=100\times e^{-0.049 s^{-1}\ties 45 s}[/tex]

[tex]N=11.02 g[/tex]

Percentage of isotope left :

[tex]\frac{N}{N_o}\times 100=\frac{11.02 g}{100 g}\times 100=11.02\%[/tex]

11.02 % of an isotope will be left after 45 seconds.