Respuesta :
Thus, the required "option 4)" is correct.
Step-by-step explanation:
We find,
[tex](x+2y)^7[/tex]
To find, the binomial expansion of of [tex](x+2y)^7[/tex] = ?
We know that,
[tex](x+y)^{n} =^nC_0x^n+^nC_1x^{n-1}y+nC_2x^{n-2}y^2+nC_3x^{n-3}y^3+...+^nC_ny^n[/tex]
∴ [tex](x+2y)^7[/tex]
Here, n = 7, x = x and y = 2y
[tex](x+2y)^7[/tex]= [tex]^7C_0x^7+^7C_1x^{7-1}(2y)+^7C_2x^{7-2}(2y)^2+^7C_3x^{7-3}(2y)^3+^7C_4x^{7-4}(2y)^4+^7C_5x^{7-5}(2y)^5+^7C_6x(2y)^6+(2y)^7[/tex][tex]=x^7+7x^{6(2y)+21x^{5}4y^2+35x^{4}8y^3+^35x^{3}16y^4+21x^{2}32y^5+7x64y^6+128y^7[/tex]
[tex]=x^7+14x^{6}y+84x^{5}y^2+280x^{4}y^3+560x^{3}y^4+672x^{2}y^5+448xy^6+128y^7[/tex]
∴ The binomial expansion of of [tex](x+2y)^7[/tex]
[tex]=x^7+14x^{6}y+84x^{5}y^2+280x^{4}y^3+560x^{3}y^4+672x^{2}y^5+448xy^6+128y^7[/tex]
Thus, the required "option 4)" is correct.
Answer:
D. x7 + 14x6y + 84x5y2 + 280x4y3 + 560x3y4 + 672x2y5 + 448xy6 + 128y7
Step-by-step explanation: