What is the binomial expansion of (x + 2y)7?
2x7 + 14x6y + 42x5y2 + 70x4y3 + 70x3y4 + 42x2y5 + 14xy6 + 2y7
x7 + 14x6y + 42x5y2 + 70x4y3 + 70x3y4 + 42x2y5 + 14xy6 + y7
x7 + 7x6y + 21x5y2 + 35x4y3 + 35x3y4 + 21x2y5 + 7xy6 + y7
x7 + 14x6y + 84x5y2 + 280x4y3 + 560x3y4 + 672x2y5 + 448xy6 + 128y7

Respuesta :

Thus, the required "option 4)"  is correct.

Step-by-step explanation:

We find,

[tex](x+2y)^7[/tex]

To find, the binomial expansion of of [tex](x+2y)^7[/tex] = ?

We know that,

[tex](x+y)^{n} =^nC_0x^n+^nC_1x^{n-1}y+nC_2x^{n-2}y^2+nC_3x^{n-3}y^3+...+^nC_ny^n[/tex]

[tex](x+2y)^7[/tex]

Here, n = 7, x = x and y = 2y

[tex](x+2y)^7[/tex]= [tex]^7C_0x^7+^7C_1x^{7-1}(2y)+^7C_2x^{7-2}(2y)^2+^7C_3x^{7-3}(2y)^3+^7C_4x^{7-4}(2y)^4+^7C_5x^{7-5}(2y)^5+^7C_6x(2y)^6+(2y)^7[/tex][tex]=x^7+7x^{6(2y)+21x^{5}4y^2+35x^{4}8y^3+^35x^{3}16y^4+21x^{2}32y^5+7x64y^6+128y^7[/tex]

[tex]=x^7+14x^{6}y+84x^{5}y^2+280x^{4}y^3+560x^{3}y^4+672x^{2}y^5+448xy^6+128y^7[/tex]

∴ The binomial expansion of of [tex](x+2y)^7[/tex]

[tex]=x^7+14x^{6}y+84x^{5}y^2+280x^{4}y^3+560x^{3}y^4+672x^{2}y^5+448xy^6+128y^7[/tex]

Thus, the required "option 4)"  is correct.

Answer:

D. x7 + 14x6y + 84x5y2 + 280x4y3 + 560x3y4 + 672x2y5 + 448xy6 + 128y7

Step-by-step explanation: