The meat department of a supermarket sells ground beef in approximate 1 lb packages, but there is some variability. A random sample of 65 packages yielded a mean of 1.05 lbs and a standard deviation of .23 lbs. What is the 99% Confidence Interval for this problemA..99 to 1.11
B.1.00 to 1.10
C..98 to 1.12
D.1.01 to 1.09

Respuesta :

Answer:

[tex] 1.05-2.65 \frac{0.23}{\sqrt{65}} \approx 0.98[/tex]

[tex] 1.05+2.65 \frac{0.23}{\sqrt{65}} \approx 1.12[/tex]

So on this case the 99% confidence interval for the mean would be given by (0.98;1.12)

And the best option is:

C..98 to 1.12

Step-by-step explanation:

Previous concepts

A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".

The margin of error is the range of values below and above the sample statistic in a confidence interval.

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

[tex]\bar X=1.05[/tex] represent the sample mean for the sample  

[tex]\mu[/tex] population mean (variable of interest)

s=0.23 represent the sample standard deviation

n=65 represent the sample size  

Solution to the problem

The confidence interval for the mean is given by the following formula:

[tex]\bar X \pm t_{\alpha/2}\frac{s}{\sqrt{n}}[/tex]   (1)

In order to calculate the critical value [tex]t_{\alpha/2}[/tex] we need to find first the degrees of freedom, given by:

[tex]df=n-1=65-1=64[/tex]

Since the Confidence is 0.99 or 99%, the value of [tex]\alpha=0.01[/tex] and [tex]\alpha/2 =0.005[/tex], and we can use excel, a calculator or a table to find the critical value. The excel command would be: "=-T.INV(0.005,64)".And we see that [tex]t_{\alpha/2}=2.65[/tex]

Now we have everything in order to replace into formula (1):

[tex] 1.05-2.65 \frac{0.23}{\sqrt{65}} \approx 0.98[/tex]

[tex] 1.05+2.65 \frac{0.23}{\sqrt{65}} \approx 1.12[/tex]

So on this case the 99% confidence interval for the mean would be given by (0.98;1.12)

And the best option is:

C..98 to 1.12