Respuesta :
Answer:
[tex]\cos B=0.4[/tex]
Step-by-step explanation:
Given
[tex]\Sin A=0.4=\frac{4}{10}=\frac{2}{5}\\\\In\ right\ triangle\\\\\sin A=\frac{Perpendicular}{Hypotenuse}=\frac{BC}{AB}=\frac{2}{5}\\\\Then\ \ \cos B=\frac{Base}{Hypotenuse}=\frac{BC}{AB}=\frac{2}{5}=0.4[/tex]

Answer:
Part a)
[tex]c=9.3\ units\\b=7.2\ units[/tex]
Part b) [tex]cos(B)=0.4[/tex] see the explanation
Step-by-step explanation:
The correct question is
In right triangle ABC, C is the right angle. Given measure of angle A = 40 degrees and a =6
Part a) which of the following are the lengths of the remaining two side, rounded to the nearest tenth?
Part b) Which of the following is cos B if sin A=0.4?
see the attached figure to better understand the problem
Part a)
step 1
Find the length of side c
Applying the law of sines
[tex]\frac{a}{sin(A)}=\frac{c}{sin(C)}[/tex]
we have
[tex]a=6\ units\\A=40^o\\C=90^o[/tex]
substitute
[tex]\frac{6}{sin(40^o)}=\frac{c}{sin(90^o)}[/tex]
solve for c
[tex]c=\frac{6}{sin(40^o)}=9.3\ units[/tex]
step 2
Find the length of side b
In the right triangle ABC
[tex]tan(40^o)=\frac{BC}{AC}[/tex] ----> by TOA (opposite side divided by the adjacent side)
substitute the values
[tex]tan(40^o)=\frac{6}{AC}[/tex]
[tex]AC=\frac{6}{tan(40^o)}=7.2\ units[/tex]
therefore
[tex]b=7.2\ units[/tex]
Part b) we know that
If two angles are complementary, the cofunction identities state that the sine of one equals the cosine of the other and vice versa
In this problem
Angle A and angle B are complementary
therefore
the sine of angle A equals the cosine of angle B
we have
sin(A)=0.4
so
cos(B)=0.4
