Answer:
Distance [tex]=\sqrt{164}\ \approx12.80\ yards[/tex]
Step-by-step explanation
Pythagorean theorem :
In a right triangle
[tex](Hypotenuse)^2=(Perpendicular)^2+(base)^2[/tex]
From the diagram
[tex]perpendicular = 10\ yards\\\\Base = 8\ yards \\\\Hypotenuse = distance\ (d)\\\\(d)^2=(10)^2+(8)^2\\(d)^2=100+64\\(d)^2=164\\d=\sqrt{164}\ \approx12.80\ yards[/tex]