Respuesta :

Option A: [tex]2^9[/tex]

Option E: [tex]2^{-2}.2^{11}[/tex]

Option F: [tex](2.2.2.2.2)(2.2.2.2)[/tex]

Solution:

Given expression is [tex]2^5.2^4[/tex].

To find which expression is equivalent to the given expression.

Option A: [tex]2^9[/tex]

Using exponent rule: [tex]a^b.a^c=a^{(b+c)}[/tex]

[tex]2^5.2^4=2^{(5+4)}=2^9[/tex]

Therefore [tex]2^9[/tex] is equivalent to the given expression.

Option B: [tex]2^{20}[/tex]

It is not equivalent to the given expression.

Option C: [tex]2.2^9[/tex]

[tex]2.2^9=2^{(1+9)}=2^{10}[/tex]

Therefore, It is not equivalent to the given expression.

Option D: [tex]2^{10}.2^2[/tex]

[tex]2^{10}.2^2=2^{(10+2)}=2^{12}[/tex]

Therefore, It is not equivalent to the given expression.

Option E: [tex]2^{-2}.2^{11}[/tex]

[tex]2^{-2}.2^{11}=2^{(2-11)}=2^9[/tex]

Therefore, It is equivalent to the given expression.

Option F: [tex](2.2.2.2.2)(2.2.2.2)[/tex]

[tex](2.2.2.2.2)(2.2.2.2)=2^5.2^4[/tex]

Therefore, It is equivalent to the given expression.

Hence option A, Option E and Option E are equivalent to the given expression.

Answer:

AEF

Step-by-step explanation: