Suppose there is a correlation of 0.87 between the length of time a person is in prison and the amount of aggression the person displays on a psychological inventory. This means that spending a longer amount of time in prison causes people to become more aggressive. a. Trueb. False

Respuesta :

Answer:

b. False

See explanation below

Step-by-step explanation:

The correlation coefficient is a "statistical measure that calculates the strength of the relationship between the relative movements of two variables". It's denoted by r and its always between -1 and 1.

And in order to calculate the correlation coefficient we can use this formula:  

[tex]r=\frac{n(\sum xy)-(\sum x)(\sum y)}{\sqrt{[n\sum x^2 -(\sum x)^2][n\sum y^2 -(\sum y)^2]}}[/tex]  

For this case we know that r =0.87. But we can't conclude that the linear correlation coefficient represent a cause-effect relationship, since the linear correlation coefficient measures the linear dependency between two variables, but we can have other types of association between the variables and that's not measured by the Pearson correlation coeffcient.

So for this case the answer woudl be

b. False