Respuesta :

Answer:

Figure 1: Option A :   [tex]$ \sqrt{\frac{\textbf{3}}{\textbf{2}}} $[/tex] ;   [tex]$ \frac{\textbf{1}}{\textbf{2}} $[/tex] ;  [tex]$ \sqrt{\textbf{3}}} $[/tex]

Figure 2: Option B: [tex]$ \frac{\sqrt{\textbf{19}}}{\textbf{10}} $[/tex] ;     [tex]$ \frac{\textbf{9}}{\textbf{10}} $[/tex] ;  [tex]$ \frac{\sqrt{\textbf{19}}}{\textbf{9}} $[/tex]

Figure 3: Option C:  [tex]$ \frac{\textbf{4}}{\textbf{5}} $[/tex]  ;  [tex]$ \frac{\textbf{3}}{\textbf{5}} $[/tex] ;  [tex]$ \frac{\textbf{4}}{\textbf{3}} $[/tex]

Step-by-step explanation:

[tex]$ \textbf{Sin A} \hspace{1mm} \textbf{= } \hspace{1mm} \frac{\textbf{opp}}{\textbf{hyp}} $[/tex]

[tex]$ \textbf{Cos A} \hspace{1mm} {\textbf{=} \hspace{1mm} \frac{\textbf{adj}}{\textbf{hyp}} $[/tex]

[tex]$ \textbf{Tan A} \hspace{1mm} \textbf{=} \hspace{1mm} \frac{\textbf{Sin A}}{\textbf{Cos A}} $[/tex]

We can simply follow these three formulas to solve the problem.

Figure 1:

Sin A = [tex]$ \frac{6\sqrt{3}}{12} $[/tex]  = [tex]$ \frac{\sqrt{3}}{2} $[/tex]

Cos A = [tex]$ \frac{6}{12} = \frac{1}{2} $[/tex]

Tan A = [tex]$ \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}} $[/tex]  = [tex]$ \sqrt{3} $[/tex]

Figure 2:

Sin A = [tex]$ \frac{2\sqrt{19}}{20} $[/tex]  = [tex]$ \frac{\sqrt{19}}{10} $[/tex]

Cos A = [tex]$ \frac{18}{20} = \frac{9}{10} $[/tex]

Tan A = [tex]$ \frac{\frac{\sqrt{19}}{10}}{\frac{10}{9}} $[/tex] = [tex]$ \frac{\sqrt{19}}{9} $[/tex]

Figure 3:

Sin A =   [tex]$ \frac{16}{20} $[/tex]   = [tex]$ \frac{4}{5} $[/tex]

Cos A = [tex]$ \frac{12}{20} = \frac{3}{5} $[/tex]

Tan A = [tex]$ \frac{\frac{4}{5}}{\frac{3}{5}} $[/tex]  = [tex]$ \frac{4}{3} $[/tex]

Hence, the answer.