Respuesta :

Answer:

[tex]m\angle CED= 64\°[/tex]  

[tex]m\angle ACD=124\°[/tex]  

Step-by-step explanation:

In the figure given:

∠ABC = 93°

∠BAC = 31°

∠CDE = 60°

To find ∠CED and ∠ACD.

Solution:

In triangle ABC, we are given two vertex angles. We can find the third angle as angle sum of triangle = 180°.

∠ABC = 93° , ∠BAC = 31°

∠BCA=  [tex]180\°-(93\°+31\°)[/tex]

∠BCA = 56°

[tex]m\angle BCA+m\angle ACD=180\°[/tex]    [Supplementary angles forming a linear pair]

[tex]m\angle ACD=180\°-56\°[/tex]

[tex]m\angle ACD=124\°[/tex]   (Answer)

In triangle CDE:

[tex]m\angle CDE+m\angle CED = m\angle ACD[/tex]   [Exterior angle theorem :Exterior angle of a triangle is equal to sum of opposite interior angles ]

[tex]60\°+m\angle CED = 124\°[/tex]

[tex]m\angle CED= 124\°-60\°[/tex]

[tex]m\angle CED= 64\°[/tex]      (Answer)

Answer:

m\angle CED= 64\°  

m\angle ACD=124\°  

Step-by-step explanation:

get an A!