EDong
contestada

Given the following information about the arithmetic sequence an, find a17.
a3=13
a13=43

Respuesta :

Answer:

[tex]$ \textbf{a}_{\textbf{17}} \hspace{1mm} \textbf{=} \hspace{1mm} \textbf{55} $[/tex]

Step-by-step explanation:

The [tex]$ n^{th} $[/tex] term of an arithmetic sequence is given by:

                       [tex]$ \textbf{a}_{\textbf{n}} \hspace{1mm} \textbf{=} \hspace{1mm} \textbf{a} \hspace{1mm} \textbf{+} \hspace{1mm} \textbf{(n - 1)d} $[/tex]

where a is the first term of the sequence

and     d is the common difference.

We are given the [tex]$ 3^{rd} $[/tex] and the [tex]$ 13^{th} $[/tex] term of the sequence.

We are asked to find the [tex]$ 17^{th} $[/tex] term.

From the formula, we can write

[tex]$ a_3 = a + (3 - 1)d $[/tex]

[tex]$ \implies 13 = a + 2d \hspace{6mm} \hdots (1) $[/tex]  

Also, [tex]$ a_{13} = a + (13 - 1)d $[/tex]

[tex]$ \implies 43 = a + 12d \hspace{6mm} \hdots (2) $[/tex]

Now, we solve Equation (1) and (2) for a and d.

Solving we get:

a = 7; d = 3

Therefore, [tex]$ 17^{th} $[/tex] term, [tex]$ a_{17} $[/tex] can now be calculated.

[tex]$ a_{17} = a + (17 - 1)d $[/tex]

[tex]$ \implies a_{17} = 7 + 16(3) $[/tex]

[tex]$ \implies \textbf{a}_{\textbf{17}} \hspace{1mm} \textbf{=} \hspace{1mm} \textbf{55} $[/tex]

Therefore, the [tex]$ 17^{th} $[/tex] term of the sequence is 55.

Hence, the answer.