Steve invests 1,800 in an account that earns 3.7% annual interest, compounded continuously. What is the value of the account after 10 years? Round your answer to the nearest dollar.

Respuesta :

Answer: the value of the account after 10 years is $2606

Step-by-step explanation:

The formula for continuously compounded interest is

A = P x e (r x t)

Where

A represents the future value of the investment after t years.

P represents the present value or initial amount invested

r represents the interest rate

t represents the time in years for which the investment was made.

e is the mathematical constant approximated as 2.7183.

From the information given,

P = 1800

r = 3.7% = 3.7/100 = 0.037

t = 10 years

Therefore,

A = 1800 x 2.7183^(0.037 x 10)

A = 1800 x 2.7183^(0.37)

A = $2606 to the nearest dollar

To solve such problems we must know about Continuous Compound Interest.

Continuous Compound Interest

[tex]A = Pe^{rt}[/tex]

where,

A is the principal amount after t number of years,

r is the rate at which the principal is been compounded, and P is the principal amount.

The value of Steve's account after 10 years will be $2,606.

Given to us

  • Steve invests 1,800 in an account that earns 3.7% annual interest, compounded continuously.
  • Time period money invested for 10 years,

Solution

As it is given in the problem, the account of Steve is compounding continuously.

Statement 1

Steve invests 1,800 in an account that earns 3.7% annual interest, compounded continuously.

  • Principal amount = $1,800
  • Rate of interest = 3.7% = 0.037

Statement 2

Time period money invested for 10 years,

  • time period, t = 10 years

Value of the account

Substituting the values in the formula of Continuous Compound Interest,

[tex]A = Pe^{rt}[/tex]

[tex]\begin{aligned}A&=\$1800\times e^{0.037\times10}\\ &=\$2605.9\approx\$2606\\ \end{aligned}[/tex]

Hence, the value of Steve's account after 10 years will be $2,606.

Learn more about Compound Interest:

https://brainly.com/question/25857212