Respuesta :

[tex]\frac{cos^2x + sin^2x}{cot^2x - cosec^2x} = -1[/tex]

Solution:

Given trignometric expression is:

[tex]\frac{cos^2x + sin^2x}{cot^2x - cosec^2x}[/tex]

We have to evaluate the above expression

Let us use the trignometric identities

[tex]sin^2x + cos^2x = 1[/tex]

Also, use another trignometric identitiy

[tex]1 + cot^2x = cosec^2x[/tex]

Therefore, upon rearranging we get,

[tex]cot^2 x -cosec^x = -1[/tex]

Apply these two identities in given expression

[tex]\frac{cos^2x + sin^2x}{cot^2x - cosec^2x} = \frac{1}{-1}\\\\\frac{cos^2x + sin^2x}{cot^2x - cosec^2x} = -1[/tex]

Thus value of given expression is -1