Apply the distributive property and the greatest common factor to write an equivalent expression. Enter your answers in the boxes.

Apply the distributive property and the greatest common factor to write an equivalent expression Enter your answers in the boxes class=

Respuesta :

Answer:

12 (5x - 2)

Step-by-step explanation:

First to know if we can get a common factor we have to find a number by which it is divisible on 24 and 60

first we will try with 2

60/2 = 30            both are divisible by 2

24 /2 = 12

then we will take common factor 2

60x - 24

we multiply and divide by 2

2 (60x - 24)/2

we distribute the 2

2(60x/2 - 24/2)

and solve

2(30x - 12)

Now we continue with the same procedure until there is no more number in common to divide

we will try with 2

30/2 = 15            both are divisible by 2

12 /2 = 6

then we will take common factor 2

2(30x - 12)

we multiply and divide by 2

2*2 (30x - 12)/2

we distribute the 2

4(30x/2 - 12/2)

and solve

4(15x - 6)

continue with the same procedure

we will try with 2

15/2 = X            only one is divisible by 2

6 /2 = 3

we will try with 3

15/3 = 5          both are divisible by 3

6 /3 = 2

then we will take common factor 3

4(15x - 6)

we multiply and divide by 3

4*3 (15x - 6)/3

we distribute the 3

12(30x/3 - 6/3)

and solve

12(5x - 2)

there is no number other than 1 by which we can divide 5 and 2

12(5x - 2)