Respuesta :

Answer:

The Final answer will be [tex]x^2-x+1[/tex] with remainder 0.

Step-by-step explanation:

We have attached the division for your reference.

Given:

Dividend = [tex]x^4+x^3+7x^2-6x+8[/tex]

Divisor = [tex]x^2+2x+8[/tex]

Explaining the division we get;

Step 1: First when we divide the Dividend [tex]x^4+x^3+7x^2-6x+8[/tex] with divisor  [tex]x^2+2x+8[/tex] we will first multiply [tex]x^2[/tex] with the divisor then we get the Quotient as [tex]x^2[/tex]  and Remainder as [tex]-x^3-x^2-6x+8[/tex]

Step 2: Now the Dividend is [tex]-x^3-x^2-6x+8[/tex] and Divisor [tex]x^2+2x+8[/tex] is  we will now multiply [tex]-x[/tex] with the divisor then we get the Quotient as [tex]x^2-x[/tex] and Remainder as [tex]x^2+2x+8[/tex]

Step 3: Now the Dividend is [tex]x^2+2x+8[/tex] and Divisor is [tex]x^2+2x+8[/tex] we will now multiply 1 with the divisor then we get the Quotient as [tex]x^2-x+1[/tex]  and Remainder as 0.

Hence The Final answer will be [tex]x^2-x+1[/tex] with remainder 0.

Ver imagen jitumahi76