The Maclaurin series expansion for the arctangent of x is defined for |x| ≤ 1 as arctan x = ∑ n=0 [infinity] (−1)n ______ 2n +1 x 2n+1 (a) Write out the first 4 terms (n = 0,...,3). (b) Starting with the simplest version, arctan x = x, add terms one at a time to estimate arctan(π/6). After each new term is added, comput

Respuesta :

Answer:

a) [tex] n =0,  \frac{(-1)^0}{2*0+1} x^{2*0+1}= x[/tex]

[tex] n =1,  \frac{(-1)^1}{2*1+1} x^{2*1+1}= -\frac{x^3}{3}[/tex]

[tex] n =2,  \frac{(-1)^2}{2*2+1} x^{2*2+1}= \frac{x^5}{5}[/tex]

[tex] n =3,  \frac{(-1)^3}{2*3+1} x^{2*3+1}= -\frac{x^7}{7}[/tex]

b) n=0

[tex] arctan(\pi/6) \approx \pi/6 = 0.523599[/tex]

The real value for the expression is [tex] arctan (\pi/6) = 0.482348[/tex]

And if we replace into the formula of relative error we got:

[tex] \% error= \frac{|0.523599 -0.482348|}{0.482348} * 100= 8.55\%[/tex]

n =1

[tex] arctan(\pi/6) \approx \pi/6 -\frac{(pi/6)^3}{3} = 0.47576[/tex]

[tex] \% error= \frac{|0.47576 -0.482348|}{0.482348} * 100= 1.37\%[/tex]

n =2

[tex] arctan(\pi/6) \approx \pi/6 -\frac{(pi/6)^3}{3} +\frac{(pi/6)^5}{5} = 0.483631[/tex]

[tex] \% error= \frac{|0.483631 -0.482348|}{0.482348} * 100= 0.27\%[/tex]

n =3

[tex] arctan(\pi/6) \approx \pi/6 -\frac{(pi/6)^3}{3} +\frac{(pi/6)^5}{5}-\frac{(pi/6)^7}{7} = 0.48209[/tex]

[tex] \% error= \frac{|0.48209 -0.482348|}{0.482348} * 100= 0.05\%[/tex]

[tex] \arctan (\pi/6) = 0.48[/tex]

Step-by-step explanation:

Part a

the general term is given by:

[tex] a_n = \frac{(-1)^n}{2n+1} x^{2n+1}[/tex]

And if we replace n=0,1,2,3 we have the first four terms like this:

[tex] n =0,  \frac{(-1)^0}{2*0+1} x^{2*0+1}= x[/tex]

[tex] n =1,  \frac{(-1)^1}{2*1+1} x^{2*1+1}= -\frac{x^3}{3}[/tex]

[tex] n =2,  \frac{(-1)^2}{2*2+1} x^{2*2+1}= \frac{x^5}{5}[/tex]

[tex] n =3,  \frac{(-1)^3}{2*3+1} x^{2*3+1}= -\frac{x^7}{7}[/tex]

Part b

If we use the approximation [tex] arctan x \approx x[/tex] we got:

n=0

[tex] arctan(\pi/6) \approx \pi/6 = 0.523599[/tex]

The real value for the expression is [tex] arctan (\pi/6) = 0.482348[/tex]

And if we replace into the formula of relative error we got:

[tex] \% error= \frac{|0.523599 -0.482348|}{0.482348} * 100= 8.55\%[/tex]

If we add the terms for each value of n and we calculate the error we see this:

n =1

[tex] arctan(\pi/6) \approx \pi/6 -\frac{(pi/6)^3}{3} = 0.47576[/tex]

[tex] \% error= \frac{|0.47576 -0.482348|}{0.482348} * 100= 1.37\%[/tex]

n =2

[tex] arctan(\pi/6) \approx \pi/6 -\frac{(pi/6)^3}{3} +\frac{(pi/6)^5}{5} = 0.483631[/tex]

[tex] \% error= \frac{|0.483631 -0.482348|}{0.482348} * 100= 0.27\%[/tex]

n =3

[tex] arctan(\pi/6) \approx \pi/6 -\frac{(pi/6)^3}{3} +\frac{(pi/6)^5}{5}-\frac{(pi/6)^7}{7} = 0.48209[/tex]

[tex] \% error= \frac{|0.48209 -0.482348|}{0.482348} * 100= 0.05\%[/tex]

And thn we can conclude that the approximation is given by:

[tex] \arctan (\pi/6) = 0.48[/tex]

Rounded to 2 significant figures