Respuesta :

Answer:

Therefore,

[tex]y=2x+6[/tex] and

[tex]6y=2x+9[/tex] are not Perpendicular.

Step-by-step explanation:

Given:

[tex]y=2x+6[/tex]         ............................Equation of line( 1 )

[tex]6y=2x+9\\y=\dfrac{1}{3}+\dfrac{3}{2}[/tex]     ............................Equation of line( 2 )

Solution:

So the Equations are written in

[tex]y=mx+b[/tex]

Where m is the slope of the line

On Comparing we get

[tex]Slope = m1 = 2[/tex]

[tex]Slope = m2 = \dfrac{1}{3}[/tex]

So for the lines to be Perpendicular.

Product of slopes = - 1

m1 × m2 = -1

So Product of slopes of the given lines are

[tex]m1\times m2=2\times \dfrac{1}{3}=\dfrac{2}{3}[/tex]

Which is not equal to -1

Therefore,

[tex]y=2x+6[/tex] and

[tex]6y=2x+9[/tex] are not Perpendicular.