Answer:
Therefore,
[tex]y=2x+6[/tex] and
[tex]6y=2x+9[/tex] are not Perpendicular.
Step-by-step explanation:
Given:
[tex]y=2x+6[/tex] ............................Equation of line( 1 )
[tex]6y=2x+9\\y=\dfrac{1}{3}+\dfrac{3}{2}[/tex] ............................Equation of line( 2 )
Solution:
So the Equations are written in
[tex]y=mx+b[/tex]
Where m is the slope of the line
On Comparing we get
[tex]Slope = m1 = 2[/tex]
[tex]Slope = m2 = \dfrac{1}{3}[/tex]
So for the lines to be Perpendicular.
Product of slopes = - 1
m1 × m2 = -1
So Product of slopes of the given lines are
[tex]m1\times m2=2\times \dfrac{1}{3}=\dfrac{2}{3}[/tex]
Which is not equal to -1
Therefore,
[tex]y=2x+6[/tex] and
[tex]6y=2x+9[/tex] are not Perpendicular.