Please help, I need input on if I did this correctly and you just substitute.

I have the function h(t) = -16t^2 + 15t + 6.5
t equals 15/32.

If you substitute 15/32 for t, what do you get?

Any help is appreciated, thank you very much!

Respuesta :

The value of h(t) when [tex]t=\frac{15}{32}[/tex] is 10.02.

Solution:

Given function [tex]h(t)=-16t^2+15t+6.5[/tex]

To find the value of h(t) when [tex]t=\frac{15}{32}[/tex]:

[tex]h(t)=-16t^2+15t+6.5[/tex]

Substitute [tex]t=\frac{15}{32}[/tex] in the given function.

[tex]$h\left(\frac{15}{32} \right)=-16\left(\frac{15}{32} \right)^2+15\left(\frac{15}{32} \right)+6.5[/tex]

            [tex]$=-16\left(\frac{225}{1024} \right)+15\left(\frac{15}{32} \right)+6.5[/tex]

Now multiply the common terms into inside the bracket.

           [tex]$=-\left(\frac{3600}{1024} \right)+\left(\frac{225}{32} \right)+6.5[/tex]

Now, in the first term, the numerator and denominator both have common factor 16. So reduce the first term into the lowest term.

          [tex]$=-\left(\frac{225}{64} \right)+\left(\frac{225}{32} \right)+6.5[/tex]

To make the denominator same, take LCM of the denominators.

LCM of 64 and 32 = 64

        [tex]$=-\left(\frac{225}{64} \right)+\left(\frac{225\times2}{32\times2} \right)+6.5\times\frac{64}{64}[/tex]

        [tex]$=-\frac{225}{64} +\frac{450}{64}+\frac{416}{64}[/tex]

        [tex]$=\frac{-225+450+416}{64}[/tex]

       [tex]$=\frac{641}{64}[/tex]

       = 10.02

[tex]$h\left(\frac{15}{32} \right)=10.02[/tex]

Hence the value of h(t) when [tex]t=\frac{15}{32}[/tex] is 10.02.