Respuesta :
Answer:
[tex]Negative[/tex]
Step-by-step explanation:
[tex]We\ have\ to\ find\ sign\ of\ 3xy^3\\\\x>0\ and\ y<0\\\\y<0 \Rightarrow y^2=y\times y\\\\Product\ of\ two\ negative\ numbers\ is\ positive \Rightarrow y^2>0\\\\y^3=y^2\times y\\\\Product\ of\ positive\ and\ negative\ number\ is\ negative\\\\y^2>0,y<0\Rightarrow y^2\times y<0\Rightarrow y^3<0\\\\xy^3<0\ \ \ \ \ as\ x>0\ and\ y^3<0\ and\ product\ of\ a\ positive\ and\ a\ negative\ number\ is\ negative\\\\3xy^3<0\ \ \ \ \ \ as\ 3>0\ and\ xy^3<0\ and\ product\ of\ positive\ and\ negative\ is\ negative[/tex]