contestada

A step-up transformer has 22 turns on the primary coil and 800 turns on the secondary coil. If this transformer is to produce an output of 5300 V with a 16- mA current, what input current and voltage are needed?

Respuesta :

Answer:

581.82 mA

145.75 V

Explanation:

N = Number of turns

I = Current

V = Voltage

p denotes primary (input)

s denotes secondary (output)

In a transformer the following relation is applied

[tex]\dfrac{I_p}{I_s}=\dfrac{N_s}{N_p}\\\Rightarrow I_p=I_s\dfrac{N_s}{N_p}=16\dfrac{800}{22}\\\Rightarrow I_p=581.82\ mA[/tex]

The input current is 581.82 mA

[tex]\dfrac{V_p}{V_s}=\dfrac{N_p}{N_s}\\\Rightarrow V_p=V_s\dfrac{N_p}{N_s}=5300\dfrac{22}{800}\\\Rightarrow V_p=145.75\ V[/tex]

The input voltage is 145.75 V

Answer:

[tex]I_p=0.582\ A[/tex]

[tex]V_p=145.75\ V[/tex]

Explanation:

Given:

No. of turns in the primary coil, [tex]N_p=22[/tex]

No. of turns in the secondary coil, [tex]N_s=800[/tex]

output voltage of the transformer, [tex]V_s=5300\ V[/tex]

output current of the transformer, [tex]I_s=0.016\ A[/tex]

from the equation of transformer we have:

[tex]I_s.N_s=I_p.N_p[/tex]

where:

[tex]I_p[/tex] = primary current on the input side

[tex]0.016\times 800=I_p\times 22[/tex]

[tex]I_p=0.582\ A[/tex]

Also

[tex]\frac{V_s}{N_s} =\frac{V_p}{N_p}[/tex]

where:

[tex]V_p=[/tex] input voltage on the primary coil

[tex]\frac{5300}{800} =\frac{V_p}{22}[/tex]

[tex]V_p=145.75\ V[/tex]