Respuesta :

Answer:

f(x).f(x) [tex]=\frac{25}{36} x^2 +\frac{25}{9}x+\frac{25}{9}[/tex]

Step-by-step explanation:

Given f(x) is a linear function.

Let f(x)= ax+c

given,f(-2)=0

∴a(-2)+c=0

⇔-2a +c=0

⇔c=2a ..........(1)

Again f(4) = -5

∴a.4+c=-5

⇔4a+c=5

⇔4a +2a=5    [∵ c= 2a]

⇔6a=5

⇔[tex]a=\frac{5}{6}[/tex]

Putting the value of a in equation (1)

[tex]c=2 \times \frac{5}{6}[/tex]

[tex]\Leftrightarrow c= \frac{5}{3}[/tex]

Therefore f(x)  [tex]=\frac{5}{6} x+\frac{5}{3}[/tex]

f(x).f(x)

[tex]=(\frac{5}{6} x+\frac{5}{3})(\frac{5}{6} x+\frac{5}{3})[/tex]

[tex]=(\frac{5}{6} x+\frac{5}{3})^2[/tex]

[tex]=\frac{25}{36} x^2 +\frac{25}{9}x+\frac{25}{9}[/tex]