Write each in ax^b form where n can be either positive or negative integer

Answer:
a. [tex]$ x^{-5} $[/tex]
b. [tex]$ 3x^{-2} $[/tex]
c. [tex]$ \frac{4}{3}x^4 $[/tex]
Step-by-step explanation:
We have to know the two results to compute the problems.
1. [tex]$ x^a . x^b = x^{a + b} $[/tex]
2. [tex]$ \frac{x^c}{x^d} = x^c . x^{-d} = x^{c - d} $[/tex]
a. [tex]$ \frac{x^3}{x^8} $[/tex]
Using (2), we get: [tex]$ \frac{x^3}{x^8} = x^{3 - 8}[/tex]
[tex]$ \textbf{= x}^{\textbf{5}} $[/tex]
b. [tex]$ \frac{6x}{2x^3} $[/tex]
[tex]$ = 3\frac{x}{x^3} $[/tex]
[tex]\textbf{= 3x}^{\textbf{-2}} $[/tex]
c. [tex]$ \frac{28x^6}{21x^2} $[/tex]
[tex]$ = \frac{4}{3}x^{6 - 2} $[/tex]
[tex]$ = \frac{\textbf{4}}{\textbf{3}}\textbf{x}^{\textbf{4}} $[/tex]
Hence, the answer.