If a ball is thrown into the air with a velocity of 36 ft/s, its height in feet t seconds later is given by y = 36t − 16t2. (a) Find the average velocity for the time period beginning when t = 2 and lasting for each of the following. (i) 0.5 seconds 28 Incorrect: Your answer is incorrect. ft/s (ii) 0.1 seconds ft/s (iii) 0.05 seconds ft/s(iv) 0.01 second.(v) t = 2.

Respuesta :

Answer with Step-by-step explanation:

We are given that

Height (in feet) of ball

[tex]y=36t-16t^2[/tex]

a.We have to find the average velocity for the time period t=2 and lasting

(i) 0.5 s

Therefore, t=2+0.5=2.5 s

Average of function on interval [a,b]=f'(c)=[tex]\frac{f(b)-f(a)}{b-a}[/tex]

[tex]y(2)=36(2)-16(2)^2=72-64=8[/tex]

[tex]y(2.5)=36(2.5)-16(2.5)^2=-10[/tex]

Using the formula

Average velocity on interval [2,2.5]=[tex]v(t)=\frac{-10-8}{2.5-2}=\frac{-18}{0.5}=-36ft/s[/tex]

(ii) 0.1 s

t=2+0.1=2.1 s

[tex]y(2.1)=36(2.1)-16(2.1)^2=5.04[/tex]

Average velocity on interval [2,2.1]=[tex]v(t)=\frac{5.04-8}{2.1-2}=-29.6ft/s[/tex]

(iii) 0.05 s

t=2+0.05=2.05 s

[tex]y(2.05)=36(2.05)-16(2.05)^2=6.56[/tex]

Average velocity on interval [2,2.05]=[tex]v(t)=\frac{6.56-8}{2.05-2}=-28.8ft/s[/tex]

(iv) 0.01 s

t=2+0.01=2.01 s

[tex]y(2.01)=36(2.01)-16(2.01)^2=7.7184[/tex]

Average velocity on interval [2,2.01]=[tex]v(t)=\frac{7.7184-8}{2.01-2}[/tex]

Average velocity on interval [2,2.01]=[tex]-28.16 ft/s[/tex]

(b) t=2 s

We have to find the instantaneous velocity at t=2 s

Instantaneous velocity=[tex]v(t)=\frac{ds}{dt}[/tex]

Using the formula

[tex]v(t)=\frac{d(36t-16t^2)}{dt}=36-32t[/tex]

Substitute t=2

Instantaneous velocity at t=2 s

v(2)=36-32(2)=-28 ft/s