Two equal positive point charges are placed at two of the co ?rners of an equilateral triangle of side A. What is the magnitude of the net electric field at the center of the triangle ?

Respuesta :

Answer:

Therefore the magnitude of the net electric filed at the center of the triangle is [tex]=\frac{6K}{A^2}[/tex] N/C

Explanation:

Given,A = side of the triangle. q = 1 C

The center of a triangle is the centroid of the triangle.

The distance between centroid to any vertices of a equilateral triangle is

[tex]=\frac{2}{3}[/tex] of the height of the equilateral triangle

[tex]=\frac{2}{3}\times \frac{\sqrt{3} }{2} \times A[/tex]

[tex]=\frac{1}{\sqrt{3} } A[/tex]

Electric field= [tex]\frac{Kq}{d^2}[/tex]       K=8.99×10⁹ Nm²/C², q=charge  and d = distance

Therefore the magnitude of the net electric filed at the center of the triangle is

=2[tex]\frac{Kq}{d^2}[/tex]         [both charge are at same distance from the centroid]

=[tex]\frac{2k}{(\frac{1}{\sqrt{3} }A)^2 }[/tex]

[tex]=\frac{6K}{A^2}[/tex] N /C      [K=8.99×10⁹ Nm²/C²]