Answer:
a. probability that exactly four sets detect the missile is 0.06561
probability that at least 1 set detect the missile is 0.99999
b. n = 3
Step-by-step explanation:
a. The probability that exactly 4 sets with probability of detection being 0.9 and 1 set fail with probability of 1 - 0.9 = 0.1 is
0.9*0.9*0.9*0.9*0.1 = 0.06561
The probability of having at least 1 set detect the missile is the inverse of the probability of having none of the set detecting the missile, which means all of the set fail to detect the missile, which is
0.1*0.1*0.1*0.1*0.1 = 0.00001
So the probability that at least 1 set detect the missile is
1 - 0.00001 = 0.99999
b. For the system to have a success rate of 0.999, this means at least 1 radar could detect the missile with probability of 0.999, which means all of them can fail with probability of 0.001. For this to happen:
[tex]0.1^n = 0.001[/tex]
[tex](10^{-1})^n = 10^{-3}[/tex]
[tex]10^{-1n} = 10^{-3}[/tex]
[tex]-n = -3[/tex]
[tex]n = 3[/tex]
You need 3 radars