Respuesta :

(a)  [tex]x^{-5}[/tex]

(b)  [tex]3x^{-7}[/tex]

(c)  [tex]$\frac{4}{3}x^4[/tex]

Solution:

To write each of the given expression in the form [tex]ax^n[/tex]:

(a)  [tex]\frac{x^3}{x^8}[/tex]

Using exponential rule: [tex]\frac{a^x}{a^y}=a^{x-y}[/tex]

[tex]$\frac{x^3}{x^8}=x^{3-8}[/tex]

[tex]$\frac{x^3}{x^8}=x^{-5}[/tex]

(b) [tex]\frac{6x}{2x^8}[/tex]

Divide numerator and denominator by the common factor 2, we get

[tex]$\frac{6x}{2x^8}=\frac{3x}{x^8}[/tex]

Using exponential rule: [tex]\frac{a^x}{a^y}=a^{x-y}[/tex]

      [tex]$=3x^{1-8}[/tex]

[tex]$\frac{6x}{2x^8} =3x^{-7}[/tex]

(c)  [tex]\frac{28x^6}{21x^2}[/tex]

Divide numerator and denominator by the common factor 7, we get

[tex]$\frac{28x^6}{21x^2}=\frac{4x^6}{3x^2}[/tex]

Using exponential rule: [tex]\frac{a^x}{a^y}=a^{x-y}[/tex]

        [tex]$=\frac{4}{3}x^{6-2}[/tex]

[tex]$\frac{28x^6}{21x^2}=\frac{4}{3}x^4[/tex]