Respuesta :

Answer:

Find below the calculations of the two areas, each with two methods. The results are:

  • Upper triangle:

                     [tex]Area=5000\sqrt{3}units^2[/tex]

  • Lower triangle:

                     [tex]Area=14,530m^2[/tex]

Explanation:

A) Method 1

When you are not given the height, but you are given two sides and the included angle between the two sides, you can use this formula:

           [tex]Area=side_1\times side_2\times sin(\alpha)[/tex]

Where, [tex]\alpha[/tex] is the measure of the included angle.

1. Upper triangle:

          [tex]side_1=200units\\ \\ side_2=100units\\ \\ \alpha =60\º\\ \\ Area=200units\times 100units\times sin(60\º)/2\\ \\ Area=5000\sqrt{3}units^2[/tex]

2. Lower triangle:

         [tex]side_1=231m\\ \\ side_2=150m\\ \\ \alpha =123\º\\ \\ Area=231m\times 150m\times sin(123\º)/2\\ \\ Area=14,529.96m^2\approx14,530m^2[/tex]

B) Method 2

You can find the height of the triangle using trigonometric properties, and then use the very well known formula:

            [tex]Area=(1/2)\times base\times height[/tex]

Use it for both triangles.

3. Upper triangle:

The trigonometric ratio that you can use is:

                    [tex]sine(\alpha)=opposite\text{ }leg/hypotenuse[/tex]

Notice the height is the opposite leg to the angle of 60º, and the side that measures 100 units is the hypotenuse of that right triangle. Then:

         [tex]sin(60\º)=height/100units\\ \\ height=sin(60\º)\times100units\\ \\ height=50\sqrt{3}units[/tex]

[tex]Area=(1/2)\times base\times height=(1/2)\times 200units\times 50\sqrt{3}units=5,000\sqrt{3}units^2[/tex]

3. Lower triangle:

         [tex]sin(180\º-123\º)=height/231m\\ \\ height=sin(57\º)\times 231m\\ \\ height=193.7329m^2[/tex]

[tex]Area=(1/2)\times base\times height=(1/2)\times 150m\times 193.7329m^2\\\\ Area=14,529.96m^2\approx 14,530m^2[/tex]