Suppose that 30% of all students who have to buy a text for a particular course want a new copy (the successes!), whereas the other 70% want a used copy. Consider randomly selecting 15 purchasers.
(a) What are the mean value and standard deviation of the number who want a new copy of the book?(b) What is the probability that the number who want new copies is more than two standard deviations away from the mean value?

Respuesta :

Answer:

a. Mean = 4.5, Standard Deviation = 1.775

b. 0.0152

Step-by-step explanation:

Given

n = 15 purchasers

p = Success = 30%

p = 0.3

q =Failure = 70%

q = 0.7

a.

Mean = np

Mean = 15 * 0.3

Mean = 4.5

Standard Deviation = √Variance

Variance = npq

Variance = 15 * 0.3 * 0.7

Variance = 3.15

Standard Deviation = √3.15

Standard Deviation = 1.774823934929884

Standard Deviation = 1.775 ---------- Approximated

b.

The probability that the number who want new copies is more than two standard deviations away from the mean value

Standard Deviation = 1.775

Mean = 4.5

2 Standard Deviation and Mean = 2 * 1.775 + 4.5

= 3.55 + 4.5

= 8.05

P(X>8.05) = P(9) + P(10) +........+ P(15)

Using the binomial distribution

(p + q) ^ n where p = 0.3, q = 0.7 , n = 15

Expanding (p+q)^n where n = 15 and r > 8

We have

15C9 p^9 q^6 + 15C10 p^10 q^5 + 15C11 p^11 q⁴ + 15C12 p^12 q³ + 15C13 p^13 q² + 15C14 p^14 q + p^15

= 5005 (0.3)^9 (0.7)^6 + 3003 (0.3)^10 (0.7)^5 + 1365 (0.3)^11 (0.7)⁴ + 455 (0.3)^12 (0.7)³ + 105 (0.3)^14 (0.7)² + 15 (0.3)^14 (0.7) + 0.3^15

=0.015234