Respuesta :

1. [tex]\frac{x^3}{x^8}=x^{-5}[/tex]

2. [tex]\frac{6x}{2x^8} = 3x^{-7}[/tex]

3. [tex]\frac{28x^6}{21x^2} = \frac{4}{3}x^4[/tex]

Step-by-step explanation:

1. x^3/x^8

Given fraction is:

[tex]\frac{x^3}{x^8}[/tex]

When the bases are same in both numerator and denominator then the exponents can be added

i.e.

[tex]\frac{x^a}{x^b} = x^{a-b}[/tex]

So,

[tex]\frac{x^3}{x^8} = x^{3-8} = x^{-5}[/tex]

Part b:

[tex]\frac{6x}{2x^8}\\= \frac{3.2.x}{2.x^8}\\=\frac{3x}{x^8}\\=3x{1-8}\\=3x^{-7}[/tex]

Part c:

Given

[tex]\frac{28x^6}{21x^2}\\= \frac{7.4.x^6}{7.3.x^2}\\=\frac{4}{3} x^{6-2}\\=\frac{4}{3}x^4[/tex]

Keywords: Fractions, exponents

Learn more about fractions at:

  • brainly.com/question/5282516
  • brainly.com/question/5424148

#LearnwithBrainly