Respuesta :
Answer:
[tex]W=-183.1\ J[/tex]
Explanation:
Given:
force applied, [tex]\vec{F} =(33 N)\hat{i} - (41 N)\hat{j}[/tex]
displacement caused, [tex]\vec{s} = (-9.4 m)\hat{i} - (3.1 m)\hat{j}[/tex]
Work done by the force on the cart:
[tex]W=\vec F.\vec s[/tex]
[tex]W=[(33 N)\hat{i} - (41 N)\hat{j}].[(-9.4 m)\hat{i} - (3.1 m)\hat{j}][/tex]
[tex]W=-310.2+127.1[/tex]
[tex]W=-183.1\ J[/tex]
Negative work means that the force and displacement have an obtuse angle between them.
Answer:
-180 J
Explanation:
We are given that
Constant force=[tex]F=(33 N)\hat{i}-(41 N)\hat{j}[/tex]
Displacement=[tex]\vec{s}=(-9.4m)\hat{i}-(3.1m)\hat{j}[/tex]
We have to find the work done .
We know that
Work done=[tex]F\cdot s[/tex]
Using the formula
Work done=[tex](33i-41j)\cdot (-9.4i-3.1j)[/tex]
Work done =[tex]33i\cdot (-9.4)i+41j\cdot 3.1 j[/tex]
By using rule [tex]i\cdot i=j\cdot j=k\cdot k=1,i\cdot j=j\cdot k=k\cdot i=i\cdot k=k\cdot j=j\cdot i=0[/tex]
Work done=[tex]-310.2+127.1[/tex]
Work done=-183.1 J
We have to write answer in two significant figures.
When units digit 3 is less than 5 then digits on left side of 3 remains same and digits on right side of 3 and 3 will be replace by zero
Work done=-180 J
Hence, the work done =-180 J