Answer: b) [tex]10^{4}M2[/tex] and [tex]-5.5 kcal/mol[/tex]
Explanation:
Equilibrium concentration of [tex]A[/tex] = [tex]10^{-2}M[/tex]
Equilibrium concentration of [tex]B[/tex] = [tex]10^{-2}M[/tex]
Equilibrium concentration of [tex]C[/tex] = [tex]10^{-2}M[/tex]
Equilibrium concentration of [tex]ABC[/tex] = [tex]10^{-2}M[/tex]
The given balanced equilibrium reaction is,
[tex]A+B+C\rightleftharpoons ABC[/tex]
The expression for equilibrium constant for this reaction will be,
[tex]K_c=\frac{[ABC]}{[A][B][C]}[/tex]
Now put all the given values in this expression, we get :
[tex]K_c=\frac{10^{-2}}{(10^{-2})^3}[/tex]
[tex]K_c=10^4M^2[/tex]
[tex]\Delta G^o=-2.303\times RT\times \log K_c[/tex]
where,
R = universal gas constant = 2 cal/K/mole
T = temperature = 300 K
[tex]K_c[/tex] = equilibrium constant = [tex]10^4[/tex]
[tex]\Delta G^o=-2.303\times 2\times 300\times \log (10^4)[/tex]
[tex]\Delta G^o=-5527.2cal/mol=-5.5kcal/mol[/tex]
Thus the equilibrium constant and the standard free energy of this association reaction at T=300 K are [tex]10^4M^2[/tex] and [tex]-5.5kcal/mol[/tex]