A 30kg rock is swung in a circular path and in a vertical plane on a .25m length string at the top of the path, the angular speed 12.0 rad/s. what is the tension in the string at that point?
A. 7.9 N.
B. 16 N.
C. 18 N.
D. 83 N.

Respuesta :

Answer

given,

mass of the rock, m = 30 Kg

Length of the string, r = 0.25 m

angular speed of the rock, ω = 12 rad/s

Tension in the string at the top of the vertical circle = ?

At the top of the string the tension is

[tex]T_{top}=\dfrac{mv^2}{r} - m g[/tex]

we know     v = r ω

[tex]T_{top}= mr\omega^2 - m g[/tex]

[tex]T_{top}= 30\times 0.25\times 12^2-30\times 9.8[/tex]

[tex] T_{top} = 786 N[/tex]

if the given mass is 0.3 Kg then tension in the rope

[tex]T_{top}= 0.30\times 0.25\times 12^2-0.30\times 9.8[/tex]

[tex]T_{top} = 7.86 N[/tex]

If the mass is 0.3 then the correct answer is option A.