A small island is 3 miles from the nearest point P on the straight shoreline of a large lake. If a woman on the island can row a boat 3 miles per hour and can walk 4 miles per hour, where should the boat be landed in order to arrive at a town 12 miles down the shore from P in the least time? Let x be the distance between point P and where the boat lands on the lakeshore. Hint: time is distance divided by speed.

Respuesta :

Answer:

The trip consists of two parts. The rowing part is the hypotenuse of right angled triangle

whose sides are the distance from P to the island, which is 5, and the distance between P and

the landing point of the rowboat on the shore, which is x

so this part of trip is sqrt(25+ x^2)

The 2nd part is the walking part, which is (8-x)

Distance = rate times time (D = rt), so to get the time you have t = D/r. We must divide each

of the trip by the appropriate rate to get the time.

a) T(x) = sqrt(25+x^2)/3 + (8-x)/4

To find minimum time required take derivative of the T(x) function and find it's zeros

T'(x) = x/(3(sqrt(25+x^2)) - 1/4 = 0

x/(3(sqrt(25+x^2)) = 1/4

4x = 3sqrt(25+x^2

16x^2 = 9(25+x^2) = 225 + 9x^2

7x^2 = 225

x^2 = 225/7

x = sqrt(225/7) = 5.669467 miles

T(x) = 3.602386382 hours

Step-by-step explanation:

The point where the boat should be landed can be found by expressing

the distance travelled on the boat and walking as a function of time.

The point where the boat should be landed is the point 3.4 miles from the

point P towards the town.

Reasons:

x represent the distance from point P to the boat landing point.

Therefore, distance of rowing the boat = √((12 - x)² + 3²)

The total time, t, is therefore;

[tex]t = \dfrac{12-x}{4} +\dfrac{\sqrt{x^2 + 3^2} }{3}[/tex]

When the time is minimum, we get;

[tex]\dfrac{dt}{dx} = \dfrac{d}{dx} \left( \dfrac{12-x}{4} +\dfrac{\sqrt{x^2 + 3^2} }{3} \right) = \dfrac{12\cdot \left(-3 + 4 \cdot\dfrac{2 \cdot x }{2\cdot \sqrt{x^2 + 9} } \right)}{144}[/tex]

[tex]\dfrac{12\cdot \left(-3 + 4 \cdot\dfrac{2 \cdot x }{2\cdot \sqrt{x^2 + 9} } \right)}{144} = -\dfrac{1}{4} +\dfrac{x }{3 \cdot \sqrt{x^2 +9} }[/tex]

[tex]\dfrac{x }{3 \cdot \sqrt{x^2 +9} } = \dfrac{1}{4}[/tex]

4·x = 3·√(x² + 9)

16·x² = 9·(x² + 9)

7·x² = 81

[tex]x = \dfrac{9 \cdot \sqrt{7} }{7}[/tex]

x ≈ 3.4 miles.

The point where the boat should be landed is the point approximately 3.4

miles from the point P in the direction of the town.

Learn more here:

https://brainly.com/question/13747147