Respuesta :

Answer:

Q1:  p = - 33

Q2: d = - 99

Q3: t = - 13

Step-by-step explanation:

Q1: [tex]$ \textbf{-} \frac{\textbf{p}}{\textbf{3}} \hspace{1mm} \textbf{-} \hspace{1mm} \textbf{8} \hspace{1mm} \textbf{=} \hspace{1mm} \textbf{3}[/tex]

We solve this taking LCM.

We get: [tex]$ \frac{-p - 24}{3} = 3 $[/tex]

[tex]$ \implies - p - 24 = 9 $[/tex]

[tex]$ \implies \textbf{p} \hspace{1mm} \textbf{=} \hspace{1mm} \textbf{- 33} $[/tex]

Q4: [tex]$ \frac{\textbf{d}}{\textbf{11}} \hspace{1mm} \textbf{-} \hspace{1mm} \textbf{4} \hspace{1mm} \textbf{=} \hspace{1mm} \textbf{- 13} $[/tex]

Again we proceed like Q1 by taking LCM.

We get: [tex]$ \frac{d - 44}{11} = - 13 $[/tex]

[tex]$ \implies d - 44 = - 13 \times 11 = - 143 $[/tex]

[tex]$ \implies d = - 143 + 44 $[/tex]

[tex]$ \implies \textbf{d} \hspace{1mm} \textbf{=} \hspace{1mm} \textbf{- 99} $[/tex]

Q7: 5t + 12 = 4t - 1

We club the like terms on either side.

[tex]$ \implies 5t - 4t = - 1 - 12 $[/tex]

[tex]$ \implies (5 -4)t = - 13 $[/tex]

[tex]$ \implies \textbf{t} \hspace{1mm} \textbf{=} \hspace{1mm} \textbf{- 13} $[/tex]

Hence, the answer.